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Abstract

The BioText project team participated in both tasks
of the TREC 2003 genomics track. Key to our
approach in the primary task was the use of an
organism-name recognition module, a module for rec-
ognizing gene name variants, and MeSH descriptors.
Text classification improved the results slightly. In
the secondary task, the key insight was casting it as
a classification problem of choosing between the ti-
tle and the last sentence of the abstract, although
MeSH descriptors helped somewhat in this task as
well. These approaches yielded results within the top
three groups in both tasks.

1 Introduction

The paper reports on the work conducted by the Bio-
Text project team at UC Berkeley for the TREC
2003 Genomics track. In 2003 this track consists
of two tasks and the document collection consists of
525,938 MEDLINE records dating between 4/1/2002
and 4/1/2003. Task 1 was intended to be similar to
standard information retrieval queries and was stated
as follows:

For gene X, find all MEDLINE references that
focus on the basic biology of the gene or its
protein products from the designated organism.
Basic biology includes isolation, structure, ge-
netics and function of genes/proteins in normal
and disease states.

The relevance judgements for this task were drawn
from GeneRIF references from the National Library
of Medicine’s LocusLink database. Participants were
allowed to make use of the gene name variation in-
formation associated with the GeneRIF.

The secondary task was intended to require more
detailed analysis, in order to allow groups to make use
of sophisticated language processing technology that
is generally considered to be important for genomics
and other bioscience text. However, due to limited
resources, a specialized annotated collection was not
yet available for this task. Instead, the goal of the
secondary task was to reproduce the GeneRIF textual
description for a given gene/document pair. Because
these descriptions were often extracted verbatim from
the document’s title or abstract, and systems were
judged on how closely the extracted text overlapped
with the original, the task was better approached as
a classification problem than as a language analysis
and generation problem.

There were some commonalities in our approaches
for the two tasks: in both cases we made use of clas-
sification algorithms and a special module for recog-
nizing gene name variants and identifying MeSH de-
scriptors in the text. Below approaches to both tasks
are described in detail.

2 The Primary Task

2.1 Overview

The main challenges in the primary task are to im-
prove recall by finding all appropriate variations of
the given gene name, to improve precision by remov-
ing documents that describe genes that do not pertain
to the target organism, and to demote the ranking of
documents that mention the target gene but have not
been assigned to a GeneRIF.

To improve recall, we created a special-purpose al-
gorithm for generating and recognizing gene name
variants. Our three-fold approach consisted of nor-
malizing gene names by replacing special characters
with spaces, developing a set of expansion rules that



generate possible variants of the gene names that are
not included in LocusLink, and looking in the cita-
tions for MeSH terms that pertain to gene names.

To improve precision we developed a semi-
automated method to convert LocusLink organism
names to MeSH organism descriptors, and used these
to filter out papers that were not relevant to the tar-
get organism.

We submitted two runs, illustrated in Figure 1. For
the first run, the relevance ranking component con-
sisted of a weighted sum over 5 different sub-queries.
For the second run, this score was combined with that
of a statistical model that was trained to distinguish
documents that are referred to by GeneRIFs from
those that are not. We used as our backend retrieval
system the IBM DB2 Net Search Extender, which
allows convenient combination of relational and full-
text queries.

In the following subsections we describe the mod-
ules for gene name recognition, organism filtering,
MeSH term mapping, GeneRIF classification, and the
method of combining the scores of the sub-queries.

2.2 MeSH Descriptors

In a number of places in the paper below we make
use of MeSH (Medical Subject Heading)® lexical hi-
erarchy.

In MeSH, each concept is assigned a unique identi-
fier (e.g., Eye is D005123) and one or more alphanu-
meric tree numbers (corresponding to particular po-
sitions in the hierarchy). For example, A (Anatomy),
AO01 (Body Regions), A01.456 (Head), A01.456.505
(Face), A01.456.505.420 (Eye). Eye is ambiguous
according to MeSH and has a second tree number:
A09.371 (A09 represents Sense Organs).

In addition, each MeSH concept is assigned a se-
mantic type (there are over 200): e.g., Enzyme, Gene
or Genome, Mammal, Tissue, Virus, etc.

In some cases in the work below we use MeSH tree
numbers and truncate them at period breaks to gen-
eralize across sub-hierarchies of the trees. In other
cases we use the unique descriptor or the semantic

type.

2.3 Identifying Variations in Gene

Names

In order to capture the variations in gene names we
had to expand the original synonym list from Lo-
cusLink since using only the gene synonyms available
from LocusLink produced relatively less accurate re-
sults.

Lhttp://www.nlm.nih.gov/mesh

We created a semi-automated technique to iden-
tify such variations. We analyzed a large set of gene
names to try to determine rules for converting a given
representation into a canonical form. First we used n-
gram matching to find candidate sets of similar gene
names. Then we inspected the results of this match-
ing to make a set of rules for such conversion (see
Table 2). Some of these rules were more accurate
and so were assigned more weight than the others.
The details appear in the next two subsections.

N-Gram Overlap

The first step in identifying patterns of variation is
to locate the variant form of the gene name in the
article text. We automated this step by using an
n-gram overlap measure [3]. “n-grams” are simply n-
long strings of continuous characters in a given doc-
ument /string. The distribution of n-grams between
pairs of strings is compared, and a score is computed
that represents the similarity between them. The
main idea behind using n-grams is that similar words
will have a high proportion of n-grams in common.
Typical values for n are 2 or 3 corresponding to the
use of digrams or trigrams, respectively.

To compute the similarity of two strings using this
method, we first compute the n-gram sets for the
strings being compared and then calculate the overlap
using the Dice Coefficient [10]. The Dice coefficient
D for two sets A and B of sizes |A| and |B]| is given
by
_ 2/ANB|

p=2c Zl
Al +|B]

This overlap measure penalizes the presence of ex-
tra characters beyond the ones common to the two
strings. Thus two strings with the same amount of
overlap get a higher score when the non-overlapping
regions are smaller in size.

We take the abstract and title of the articles asso-
ciated with the genes and compute the n-gram over-
lap of all the possible subsequences of words against
all known alias forms of the gene. We use character
level digrams and trigrams with Dice Coeflicient as
the overlap measure. The word sequences in the ab-
stracts/title that have high similarity to one of the
known alias forms of the query gene are reported.

Inspection and Rule Generation

The procedure outlined above yields high similarity
pairs of strings with one of them corresponding to
the known alias form of a gene name and the other
to the actual variant form of representation found
in article text. We process this list to remove the
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Figure 1: Software architecture for the primary task. Part (a) was used for both runs; part (b) for the second
run only.

Known Alias Name Best match variant in text

HLA-DQB1 hla-dgb

DNA synthesis inhibitor inhibitors of dna synthesis

phospholipase C, gamma 1 phospholipase ¢ gamma 1

adrenergic receptor, alpha 1d alpha 1d-adrenergic receptor

Janus kinase 2 (a protein tyrosine kinase) | protein tyrosine kynase

golgi protein, 73-kD golgi protein

luteinizing hormone/choriogonadotropin | luteinizing hormone-choriogonadotropin (lh/hcg)

Table 1: Some selected overlap pairs for gene names and their variants



ones that are exactly identical (note that identical
strings will receive the highest similarity coefficient of
1). Next we remove those that lie below a threshold,
that is obtained using quick inspection of the list (we
used a threshold of 0.5). This yields a set of original
forms and their variants. Selected overlap matches
are shown in Table 1.

We inspect the pairs obtained to identify the pat-
terns of variation in gene names. These patterns are
used to generate rules to transform the names to ob-
tain a broader set of alias forms for the gene names.
The rules that we generated are shown in Table 2.
Such rules are syntactic in nature; sometimes there
are variations of semantic nature that cannot be cap-
tured this way.

2.4 Organism Filtering

We filtered out documents that do not correspond to
the organism that the query gene belongs to (note
that each query in the TREC task consists of a gene
name and a corresponding organism). Similar genes
with the same name can occur in multiple organisms,
e.g., the gene named c-myc which stands for “cellular
myelocytomatosis oncogene” can be found in differ-
ent organisms including humans and chickens. In hu-
mans it is located on chromosome 8 and is involved
in the pathogenesis of Burkitt’s lymphoma. In chick-
ens, c-myc activation by avian leukosis virus appears
to result in the development of lymphoid leukosis.
Most of the time we are interested in documents that
talk about the function of the gene corresponding to
a given organism.

MEDLINE records do not contain an “organism
annotation” for the documents. However this infor-
mation can be inferred from the MeSH terms assigned
to the article. For example, a document that talks
about the fruitfly “Drosophila melanogaster” con-
tains the MeSH term Drosophila melanogaster. How-
ever the organism names used in LocusLink usually
do not match the corresponding MeSH term. For ex-
ample, the term Human is used in MeSH instead of
“Homo sapiens” used by LocusLink.

We used the combined information in LocusLink
and MEDLINE to identify the descriptors used to
characterize the organisms for MEDLINE documents.
We collected the MEDLINE references (as described
before, LocusLink has a set of references to MED-
LINE documents relevant to the gene) for documents
corresponding to each organism in LocusLink.? Each
query produced a set of documents corresponding to
a LocusLink organism. We then ran a query to com-
pute what the top MeSH terms were for each set of

2LocusLink contains genes from eight different organisms.

documents.

By looking at the most frequent MeSH descriptors
for each of the document classes, we can infer the
term that is used to denote the organism in MED-
LINE. We also checked if the LocusLink organism is
used in MEDLINE name in full or partially for the
same one; e.g., the terms Drosophila and Caenorhab-
ditis also appear in the MeSH headings contained in
MEDLINE. None of the other organism names ap-
pears in their original LocusLink form. The terms
that we ultimately use to map the documents in the
collection to organisms are shown in Table 3. Some
of the documents map to multiple organisms and a
few map to none.

2.5 Mapping Query Terms to MeSH

In order to further improve the system’s performance,
we also retrieved documents using their MeSH anno-
tations. Both MeSH Main Headings and MeSH Sup-
plementary Concepts (Chemical List) map to MeSH
concepts. Each MeSH concept has one or more tex-
tual synonyms that are called MeSH terms. Given
a query term the system retrieves all the documents
that are annotated with a MeSH concept that has
a MeSH term that exactly matches one of the gene
names or one of its original synonyms (not including
the expanded forms).

Adding MeSH mappings to the query helped
mainly in ranking the retrieved documents. Docu-
ments that are retrieved by using the MeSH mapping
in addition to the text search are more likely to be
relevant, and therefore are given higher scores.

2.6 GeneRIF Classification Module

The goal of the classification module is to estimate
the probability that a given document has been as-
signed to a GeneRIF. Our approach is based on the
idea that articles which discuss gene function contain
a distinct set of features which can be learned using
automated techniques. The resulting models can be
used to classify new documents.

Feature Selection

We experimented with a number of different feature
sets; a comparison of their corresponding classifica-
tion accuracy is presented in Figure 2. We compared
(a) using MeSH descriptors as complete phrases, (b)
using MeSH tree numbers, (c) using words in ab-
stracts with stemming, and (d) using MeSH descrip-
tors combined with tree numbers from levels one and
two. The best results are obtained for MeSH descrip-
tors used as complete phrases.



AB N A B removal of comma

’ B A rearrangement of tokens

A([n])

A_|n] = A[n] where [n] is the set of numerals

A-[n]
Aln] = An] addition of spaces (normalization of numerals)
A [n] = Aln] removal of spaces (denormalization of numerals)

A B removal of parentheses
A(B) = { A removal of terms in parentheses
Table 2: Rules for expanding gene names

Organism name from LocusLink | MeSH descriptor to look for

Bos taurus Cattle

Caenorhabditis elegans Caenorhabditis elegans, Caenorhabditis
Danio rerio Zebrafish

Drosophila melanogaster Drosophila melanogaster, Drosophila
Homo sapiens Human

Human immunodeficiency virus 1 | HIV-I

Mus musculus Mice

Rattus norvegicus Rats

Table 3: MeSH t

erms used to map documents to organisms
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Figure 2: Classification accuracy for different feature sets: (a)descriptors as phrases (b) Whole tree numbers
(c) Abstracts cleaned and stemmed (d) descriptors together with tree numbers



Model Training

Once the feature vectors are obtained, we train a clas-
sifier to build a model that can predict whether a
document talks about gene function. We use a Naive
Bayes classifier [5, 9]. Its fundamental idea is the
assumption that the values of the feature variables
F = ([, F;, ..., F,) are conditionally independent
given the class variable S. The joint probability is
given by the expression:

N
p(S, F) = p(S) [ (F:15)

i=1

(1)

The model parameters are given by the probabilities
p(S) and p(F;|S), which are usually estimated from
the text by means of maximum likelihood estimates
(MLE). The classification of a new concept is deter-
mined by the most likely category:
Sy = arg r%zixp(SﬂF) (2)

Naive Bayes classifiers are among the most suc-
cessful algorithms for document classification. The
Naive Bayes classifier is known to be optimal when at-
tributes are independent given the class, but Domin-
gos et al. [4] show that it will often outperform more
powerful classifiers for common training set sizes and
numbers of attributes even if the independence as-
sumption is not met.

The implementation of the Naive Bayes classifier
we currently use is part of the open source machine
learning package WEKA (Waikato Environment for
Knowledge Analysis [1, 11]) from the University of
Waikato, New Zealand. They provide excellent Java
implementation of Naive Bayes and other machine
learning algorithms.

One model was trained for a set of 50 gene names
that are not part of the TREC training or test set.
We used the retrieval module to extract the relevant
documents for each target gene, and the first 1000
documents of each query as the training set.

2.7 Document Ranking

As mentioned above, we used IBM DB2 Universal
Database to store MEDLINE documents including
the abstracts, titles and other annotations. We have
built text indexes on these fields using DB2 Net
Search Extender, which is then used to search for
documents that contain a given set of terms.

We retrieve all the documents that match one of
the known alias forms of the gene or the variations
created using the expansion rules (variant forms are
generated for all the aliases). The query against the

database is composed of five sub-queries combined
with the SQL UNION operator, as follows.

Let G be the various forms of the gene name as
computed by the conversion rules shown in Table 2
and let LG be other lower-confidence rules for nor-
malizing the gene names that have a higher rate of
false positives. For the first run, the score is com-
puted as follows:

Score(R) = the aggregated SUM over the result of
the UNION operator GROUP BY document id of:

J * (G compared to terms in titles)

b) J * (LG compared to terms in abstracts)
¢) K * (LG compared to terms in titles)
d) K * (LG compared to terms in abstracts)
e) L * (MeSH concepts compared to MeSH
erms assigned to documents)

(a)
(b)
(
(
(
t

where J = 1, K = 0.015, and L = 1.4 (determined
experimentally on training data).

As shown above, the scores of the documents in
each sub-query are weighted and then aggregated us-
ing the UNION operator and the SUM aggregate
function. We experimented with using the MAX ag-
gregate function instead, but the results obtained us-
ing the SUM function were substantially better. This
is due to the fact that documents that are retrieved in
multiple sub-queries get a higher total score, and are
in fact more likely to be more relevant to the query.
We also experimented with giving higher weights to
titles over abstracts, but this did not appear to help.
Increasing the weights of specific types of aliases (offi-
cial terms for example) did not improve the system’s
performance either.

For the second run, in order to combine the re-
trieval scores and the classification scores we nor-
malized the weighted scores for each query into val-
ues between 0 and 1 by dividing the score by the
highest document score of the query. The combined
retrieval-classification score is a weighted sum of the
two scores. We used 1 and 0.01 as the weights for the
retrieval and the classification scores respectively.

The retrieval score is a value between 0 and 1 for
each document and is obtained in part by combin-
ing the frequency of occurrence of the term in the
document and the relative size of the retrieved doc-
ument. The exact details of the scoring function are
not available as they are part of the DB2 proprietary
system.3

3However, we have been told via personal communication
from James Cooper of IBM, reporting information from Roy
Byrd of IBM, that the algorithm is based on the Guru ranking
algorithm [8], which is a Bayesian computation of a document’s
probability of being relevant to the query, with lexical affinities
mixed in.



2.8 Evaluation

We submitted two runs for the primary task. The
first run uses only the retrieval module, and the sec-
ond run combines it with the classification module.

When training our system we noticed that some
of the topics in the training set did not have any
GeneRIFs associated with them. We therefore re-
moved them from the training topic list. Also, some
correct GeneRIFs were not listed in the list of qrels.
After fixing these errors our system achieved 0.5028
mean average precision (MAP) on the training set
with the retrieval module alone, and 0.5101 with the
modules combined. The classification module helps
but not dramatically.

On the test set our system achieved 0.3753 MAP
with the retrieval module alone, and 0.3912 MAP us-
ing both modules combined. Again, the classifica-
tion module helps but not markedly. In 12 out of
50 queries the retrieval module alone achieves MAP
higher than the combined modules.

The big gap in performance between the test and
training sets suggests that the system parameters
might be over-fitting the training set. However, an
initial sensitivity analysis of the system performance
on the test set, shows that only a minor improve-
ment can be achieved by tuning the parameters to
fit the test set. Another explanation for the perfor-
mance gap might be that the test set is inherently
harder than the training set. This hypothesis is in
agreement with the analysis presented in [6], which
shows a high degree of variation in MAP across top-
ics in general, and between the training and test sets
in particular.

Both our runs fell within statistical significance of
the top performing group [6]. In 43 out of 50 queries
the MAPs of both runs were higher then the median
MAP. Analysis of the 7 remaining queries yields some
interesting insights about possible improvements of
our system. In 3 out of 7 queries the low MAP was
a result of a low recall. This is mainly due to some
limitations of the current gene name expansion rules.
For example, in query 37 the system retrieved only
36 relevant documents out of the possible 61. This is
due to the fact that one of the query terms was per-
oxisome proliferative activated receptor gamma while
in many relevant documents it appears as perozisome
proliferative activated receptor gamma isoform 1, and
another query term, PPAR gamma, appears in the
text as PPARgamma. Additional low-confidence ex-
pansion rules could improved the MAP in these cases
without affecting the performance of other queries. In
many cases the system retrieved much less than the
allowed 1000 documents. In these cases, recall could

also be improved by retrieving additional documents
with low ranking scores like the ones that were fil-
tered out by the organism-filter, or documents that
could be retrieved using single query terms instead of
full phrases. Of the other 4 sub-par queries, 1 was
due to a small bug in the implementation of one of
the high-confidence expansion rules that resulted in
the addition of an over-generalized term with a high
weight into the query, and the other 3 were due to
sub-optimal rankings.

3 The Secondary Task

3.1 Overview

For the secondary task, our initial intention was to
try a linguistically motivated approach but we soon
realized that the data was too noisy due to a lack of
clear definition of what a GeneRIF is. Instead, we
addressed it as a text classification problem.

Our investigations showed that most of the time
the GeneRIF text was pulled verbatim, or with slight
modifications, from the abstract text or title. Most
of the time the extract came from the title and in
the majority of the remaining cases — from the last
sentence of the abstract. Thus we assumed the base-
line was always choosing the title since it was quite
difficult to find an algorithm that performed better
than this.

After much experimentation, we ended up training
a Naive Bayes classifier that, given an abstract text,
predicts whether the last sentence or the title is a
better candidate for GeneRIF text. Our feature set
was limited to verbs, MeSH terms (cut at level 2, e.g.
(G14.330), genes (a single feature for the frequency of
all genes), all weighted by TF.IDF, and the appear-
ance of the target gene (a Boolean feature). For train-
ing we focused on the abstracts coming from the 5
target journals that were announced on the genomics
track Web site (about 6,500 abstracts in total), split
them into 10 sets and performed a stratified 10-fold
cross validation.

3.2 GeneRIF Mapping into the Ab-
stract Text

Looking at the GeneRIFs we found that most of the
time the GeneRIF text was pulled verbatim, or with
slight modifications, from the abstract text. To quan-
tify this, we investigated 33,662 MEDLINE abstracts
that had a GeneRIF assigned and we tried to find
a substring in the text that is most similar to the
GeneRIF description. Given a particular abstract,
we considered all possible sequences, respecting the



Run Modified Unigram Dice
In title 35.17%
In abstract 45.81%
In both 4.98%
In last sentence 20.63%
Exact title match 19.67%
’ Total matched \ 76.02% ‘

Table 4: Finding the best mapping of the GeneRIF
text against the corresponding abstract.

word and sentences boundaries, and for each one we
calculated the Modified Unigram Dice (MUD) score.
We accepted a mapping as successful if the score was
above some threshold.

When the MUD threshold was set to 80%, a suc-
cessful mapping for 25,590 of the documents (76.02%)
could be obtained directly from the title and/or ab-
stract. For 11,847 (35.17%) of them an acceptable
match was a substring of the title (and for 6,620
(19.67%), the whole title was taken verbatim: this
is 65.10% of the cases when the mapping was found
in the title). In 15,421 documents (45.81%), the best
match was inside a sentence from the abstract body,
and in 1,678 (4.98%) it was found in both the title
and the body. In 6,943 of the cases (20.63%) the best
match was found in the last sentence of the abstract
(this is 50.52% of the cases when it was found in the
abstract body). (Note that there is always further
opportunity to truncate some unused part of the sen-
tence and improve the score.)

Given the fact that for most of the abstracts an
acceptable matching was found in the title and that
in 65.10% of them the best match was the whole title
taken verbatim, an obvious baseline was “pick the
title”. This resulted in a MUD score of 53.39%.

The last sentence of an abstract usually summa-
rizes its contents, so it was not surprising that it often
contained the best match. The title and the last sen-
tence together account for 73.40% of the matches that
pass the threshold. Thus, an algorithm that chooses
between them would have the potential to perform
better than always choosing the title. We calculated
that if we limited the choice to title or last sentence
and always selected the one that leads to a higher
score (we select the whole last sentence or the whole
title), this would result in a MUD score of 66.33%.
This is the upper bound for any algorithm that re-
lies on whole sentences and chooses between the title
and the last abstract sentence only. In practice this
algorithm may not perform better than the “pick the
title” baseline since it may choose incorrectly. We

calculated that if it always made the wrong choice it
would end up with a MUD score of 26.62%.

We performed similar calculations using as sim-
ilarity measures Classic Dice (CD), Modified Bi-
gram Dice (MBD), Modified Bigram Dice Phrases
(MBDP) as well as a combination of MBU and MBD.
The results were all similar, although sometimes the
best choices under the different scores differed. We
also performed a more general mapping that allowed
the target GeneRIF text description to split into two
parts, each of which can be mapped to two differ-
ent parts of the abstract text. Although this way we
found better matches for some of the GeneRIFs, the
impact was limited: 77.10% matched as compared to
76.02% for the case when a single string was allowed.

3.3 The Features

We experimented with a number of different features,
including: words/stems, verbs (the most frequent
ones only: e.g. bind, block, inhibit, accept, involve
etc.; they are stemmed so nominalized verbs are con-
sidered as well: e.g. inhibition), genes, genes_freq
(frequency: how many gene names are mentioned
in the sentence), MeSH unique_ID (e.g. D005796),
MeSH tree_number cut at a certain level (level 1:
G14, or level 2: G14.330), MeSH_semantic_type,
journal, publication_date (month and year taken
together, e.g.  10-2003). We used also three
Boolean features: target_gene (is the target gene men-
tioned?), is_title (is the current sentence the title?),
is_last_sentence (is this the last sentence?). The fea-
tures were weighted according to the TF.IDF measure
(except for the Boolean ones). We also experimented
without weighting (i.e. using the raw frequency in-
formation) as well as treating all features as Boolean.

The journal and publication_date features were in-
troduced in order to account for possible journal- or
time-dependent regularities, but these did not prove
useful. The MeSH_semantic_type features were too
general. The words and stems lead to a dramatic in-
crease in the vector space dimensionality, which made
training some particular classifiers intractable so we
did not use them. The same applies to genes_freq and
MeSH_unique_ID.

The best combination of features was (we will re-
fer to it as the standard feature set below): wverbs,
genes_freq, MeSH _tree_number (cut at level 2), tar-
get_gene, is_title and is_last_sentence. The three
Boolean features were especially important, while the
impact of genes_freq was minor. The non-Boolean
features were weighted using TF.IDF.



3.4 Choosing the Title vs. the Last

Sentence

For the classification experiments we used the WEKA
Machine Learning Software in Java again. We used
mainly Naive Bayes with kernels [7] but tried several
others classifier as well. Decision trees were helpful
to identify the useful features: e.g. the MeSH terms
turned up often.

As mentioned above, we addressed the problem as
a text classification task at the sentence level, and
ended up stating it as a choice between the title and
the last sentence. Using the standard feature set, we
trained a Naive Bayes classifier that was able to dis-
tinguish between when the best sentence is a title vs.
a non-title with an accuracy of 81.22%, as measured
on a stratified 10-fold cross-validation on a corpus of
4,000 GeneRIF texts.

We wanted to extend this idea in the direction of
a two-step classification: the first classifier chooses
between title and non-title. In case non-title is cho-
sen, then a second classifier chooses the best ab-
stract sentence (here the most important feature
is is_last_sentence). The second classifier is to be
trained on non-title sentences only. Unfortunately,
comparing the title to the abstract body was prob-
lematic due to substantial length differences. We de-
cided to simplify the things further and compare the
title to the last sentence only.

We trained a Naive Bayes classifier with kernels
that, given a gene and a document, chooses between
the title (class A) and the last sentence (class B).
We used the standard feature set, but without the
is_title and is_last_sentence features. In order to label
the training examples as belonging to class A/B we
compared the MUD overlap of the target GeneRIF
text with both the title and the last sentence and
assigned the label A or B depending on which get
a higher score. We then concatenated the title and
the last sentence and extracted the features from the
resulting string. So, each abstract produced a single
example labeled either A or B.

We tried marking the features (e.g. MeSH terms)
to indicate whether they came from the title or from
the last sentence in order to allow the classifier to
distinguish between them, but this lead to decreased
performance and so was dropped. Finally, we limited
the training to the abstracts coming from the 5 target
journals that were announced on the genomics track
Web site: about 6,500 abstracts in total. We split
them into 10 sets and performed a stratified 10-fold
cross-validation.

3.5 Evaluation

We performed several experiments for the different
formulations of the problem in order to find the best
feature set and the best classification algorithm us-
ing stratified 10-fold cross-validation and collections
of different sizes: 343, 1000, 2000, 5000, 10000, 20000,
33662 etc. Then we fixed the feature set (the stan-
dard feature set) and the classifier (Naive Bayes; class
A/B) and concentrated on a set of 6,500 abstracts
that have GeneRIFs and come from the 5 journals.
We ran series of experiments in order to find the best
thresholds for feature selection.

The baseline results of always choosing the title
for the various scoring metrics are shown on line 1 of
Table 5. For the training set cross validation runs,
the best results were obtained for minimum verb fre-
quency of 5 and minimum MeSH tree number fre-
quency of 12 (see line 2 of Table 5).

For the TREC run we trained on all the abstracts
from the 5 journals, except the 139 ones used for test-
ing. We used the feature thresholds found above (5
for verbs and 12 for MeSH tree numbers) and we ob-
tained the results shown on line 3 of Table 5. Al-
though these are lower than those of line 2, they are
still about 3—4% above the baseline shown on line 1.

We also calculated the best possible score we could
have obtained if our algorithm had always made the
correct choice between the title and the last sentence
(see line 5 of Table 5). If we had tuned the parameters
to the test set, we would have used minimum verb
frequency of 12 and minimum MeSH frequency of 11
and gotten the results shown in line 4 of Table 5. (Of
course, we cannot use the test set to compute the
thresholds for the TREC run.)

Finally, our scores 57.83%, 59.63%, 46.75%, 49.11%
(for CD, MUD, MBD and MBDP) were the second
best ones after those of Erasmus University (emc4):
53.04%, 54.65%, 38.62%, 41.17, who used a similar
classification technique but managed to successfully
train a classifier to choose among all sentences, not
just between the title and the abstract. In fact, emc4
was the only other group that was able to beat the
baseline. However, according to [6], neither of these
results represents a statistically significant improve-
ment over just using the titles.

4 Discussion

4.1 Primary Task

It appears that the definition of GeneRIF is quite
fuzzy. This limits the potential contribution of our
classification module. However, we believe that in



Run CD MUD | MBD | MBDP
1 Baseline 50.47% | 52.60% | 34.82% | 37.91%
2 | Cross Validation | 58.06% | 59.11% | 44.74% | 47.29%
3 TREC run 53.04% | 54.65% | 38.62% | 41.17%
4 | Tuned thresholds | 54.88% | 56.66% | 40.66% | 43.31%
5 Upper bound 61.72% | 64.19% | 50.88% | 54.00%

Table 5: TREC run result compared to baseline, best possible result and a better features selection.

cases where the subset of relevant documents could
be defined more precisely combining such a classifier
with a more traditional IR system could result in a
significant boost in performance.

In order to further improve the performance of our
system, semantic information has to be incorporated.
In the future we plan to add syntactic and seman-
tic annotations to the text in order to support much
more powerful algorithms for information retrieval
and extraction from bioscience literature.

4.2 Secondary Task

Better results could potentially be obtained with a
careful feature selection algorithm [12]: all we do at
present is to remove the least frequent features and
our algorithm is very sensitive to setting the correct
threshold (compare lines 3 and 4 in Table 5). This
would allow the introduction of some carefully se-
lected stems as features without a dramatic increase
of the vector space dimensionality, and can account
for predictive phrases of the kind: our results show
that .... In addition, although good, our gene and
MeSH tagging utilities are not perfect. MeSH am-
biguity is another source of problems and the verb
nominalization introduces some noise as well.

A promising improvement would be a more care-
ful truncation of the unnecessary part of the selected
sentence. It would be also interesting to try some
specialized algorithm that tries to learn a ranking di-
rectly (e.g. [2]) as opposed to the classification ap-
proach described above.

Finally, it would be good to have a similarity mea-
sure that takes into account the semantics, e.g., not
penalize those cases in which a synonym name for the
same gene is used.
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